Research Group Space
paco.garcia[at]ebd.csic.es

Embryo viability

Publications filtered by: Embryo viability

Genetic variation but weak genetic covariation between pre- and postcopulatory episodes of sexual selection in Drosophila melanogaster
Travers, L. M., Garcia-Gonzalez, F. & Simmons, L. W. 2016 Genetic variation but weak genetic covariation between pre- and postcopulatory episodes of sexual selection in Drosophila melanogaster Journal of Evolutionary Biology, 29: 1535-1552
Additive genetic variance in polyandry enables its evolution but polyandry is unlikely to evolve through sexy or good sperm processes
Travers, L. M., Simmons, L. W. & Garcia-Gonzalez, F. 2016 Additive genetic variance in polyandry enables its evolution but polyandry is unlikely to evolve through sexy or good sperm processes Journal of Evolutionary Biology, 29: 916-928.
Abstract

Polyandry is widespread despite its costs. The sexually selected sperm hypotheses (‘sexy’ and ‘good’ sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2) while controlling for sampling variance due to male x male x female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest the evolution of polyandry may not be driven by sexy sperm or good sperm processes.

Risk-spreading by mating multiply is plausible and requires empirical attention
Garcia-Gonzalez, F., Yasui, Y. & Evans, J.P. 2015 Risk-spreading by mating multiply is plausible and requires empirical attention Proceedings of the Royal Society of London B, 282: 20150866
Transgenerational effects of sexual interactions and sexual conflict: non-sires boost the fecundity of females in the following generation
Garcia-Gonzalez, F. and Dowling, D. K. 2015 Transgenerational effects of sexual interactions and sexual conflict: non-sires boost the fecundity of females in the following generation Biology Letters, 11:20150067
Abstract

The consequences of sexual interactions extend beyond the simple production of offspring. These interactions typically entail direct effects on female fitness, but may also impact the life histories of later generations. Evaluating the cross-generational effects of sexual interactions provides insights into the dynamics of sexual selection and conflict. Such studies can elucidate whether offspring fitness optima diverge across sexes upon heightened levels of sexual interaction among parents. Here, we found that, in Drosophila melanogaster, components of reproductive success in females, but not males, were contingent on the nature of sexual interactions experienced by their mothers. In particular, maternal sexual interactions with non-sires enhanced female fecundity in the following generation. This highlights the importance of non-sire influences of sexual interactions on the expression of offspring life histories.The consequences of sexual interactions extend beyond the simple production of offspring. These interactions typically entail direct effects on female fitness, but may also impact the life histories of later generations. Evaluating the cross-generational effects of sexual interactions provides insights into the dynamics of sexual selection and conflict. Such studies can elucidate whether offspring fitness optima diverge across sexes upon heightened levels of sexual interaction among parents. Here, we found that, in Drosophila melanogaster, components of reproductive success in females, but not males, were contingent on the nature of sexual interactions experienced by their mothers. In particular, maternal sexual interactions with non-sires enhanced female fecundity in the following generation. This highlights the importance of non-sire influences of sexual interactions on the expression of offspring life histories.

Mating portfolios: bet-hedging, sexual selection and female multiple mating
Garcia-Gonzalez, F., Yasui, Y. and Evans, J. P. 2015 Mating portfolios: bet-hedging, sexual selection and female multiple mating Proceedings of the Royal Society of London B, 282: 20141525
Abstract

Polyandry (female multiple mating) has profound evolutionary and ecological implications. Despite considerable work devoted to understanding why females mate multiply, we currently lack convincing empirical evidence to explain the adaptive value of polyandry. Here we provide a direct test of the controversial idea that bet-hedging functions as a risk-spreading strategy that yields multi-generational fitness benefits to polyandrous females. Unfortunately, testing this hypothesis is far from trivial, and the empirical comparison of the across-generations fitness payoffs of a polyandrous (bet hedger) versus a monandrous (non-bet hedger) strategy has never been accomplished because of numerous experimental constraints presented by most ‘model’ species. In the present study we take advantage of the extraordinary tractability and versatility of a marine broadcast spawning invertebrate to overcome these challenges. We are able to simulate multi-generational (geometric mean) fitness among individual females assigned simultaneously to a polyandrous and monandrous mating strategy. Our approaches, which separate and account for the effects of sexual selection and pure bet-hedging scenarios, reveal that bet-hedging, in addition to sexual selection, can enhance evolutionary fitness in multiply-mated females. In addition to offering a tractable experimental approach for addressing bet-hedging theory, our study provides key insights into the evolutionary ecology of sexual interactions.

Male-induced costs of mating for females compensated by offspring viability benefits in an insect
Garcia-Gonzalez, F. & Simmons, L. W. 2010 Male-induced costs of mating for females compensated by offspring viability benefits in an insect Journal of Evolutionary Biology, 23: 2066-2075
Abstract
Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay-offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner’s absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate-induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species.
Garcia-Gonzalez, F. 2008 Male genetic quality and the inequality between paternity success and fertilization success: consequences for studies of sperm competition and the evolution of polyandry Evolution, 62:1653-1665
Abstract
Studies of postcopulatory sexual selection typically estimate a male’s fertilization success from his paternity success (P2) calculated at hatching or birth. However, P2 may be affected by differential embryo viability, thereby confounding estimations of true fertilization success (F2). This study examines the effects of variation in the ability of males to influence embryo viability upon the inequality between P2 and F2. It also investigates the consequences of this inequality for testing the hypothesis that polyandrous females accrue viability benefits for their offspring through facilitation of sperm competition (good-sperm model). Simulations of competitive mating trials show that although relative measures of male reproductive success tend to underestimate the strength of underlying good-sperm processes, good-sperm processes can be seriously overestimated using P2 values if males influence the viability of the embryos they sire. This study cautions the interpretation of P2 values as a proxy for fertilization success or sperm competitiveness in studies of postcopulatory sexual selection, and highlights that the good-sperm hypothesis needs empirical support from studies able to identify and separate unequivocally the males’ ability to win fertilizations from their ability to influence the development of embryos.
Paternal indirect genetic effects on offspring viability and the benefits of polyandry
Garcia-Gonzalez, F. & Simmons, L. W. 2007 Paternal indirect genetic effects on offspring viability and the benefits of polyandry Current Biology, 17: 32-36
Abstract
Although females are expected to maximize their reproductive success with only one or a few matings, the females of many species mate with multiple partners. Experimental studies have found evidence for an increase in egg or embryo viability when females mate polyandrously. These studies have been interpreted in the context of genetic-benefit models that propose that multiple mating increases offspring viability because it allows females to select male genotypes that influence viability directly or because it allows females to avoid genetic incompatibility. However, no studies have examined directly the precise mechanisms by which parents influence embryo viability. Using a morphological marker that enabled us to determine paternity and survival of embryos sired by individual male crickets in both sperm competitive and -noncompetitive situations, we show that males inducing high embryo viability enhance the viability of embryos sired by inferior males. These results indicate that paternal effects and interacting phenotypes determine embryo viability. They show that a male’s reproductive success is modified by the interaction between indirect genetic effects of sperm competitors. Importantly, our findings show that the benefits accruing to offspring of multiply mated females need not be transmitted genetically.
Female crickets trade offspring viability for fecundity
Simmons, L. W. & Garcia-Gonzalez, F. 2007 Female crickets trade offspring viability for fecundity Journal of Evolutionary Biology, 20: 1617-1623
Abstract
A growing number of studies are suggesting that females can improve the viability of their embryos by mating with multiple males. However, the reason why females should have low rates of embryo viability is puzzling. Here we conduct a quantitative genetic study of maternal effects on embryo viability in the field cricket Teleogryllus oceanicus. After controlling for female body size, we find significant additive genetic variance for ovary weight, a measure of fecundity, and egg hatching success, a measure of embryo viability. Moreover, we show a genetic trade-off between these traits that is predicted from life-history theory. High rates of embryo mortality in this highly fecund species might therefore be explained by selection favouring an optimum balance between fecundity and embryo viability that maximizes maternal fitness. Paternal effects on female fecundity and embryo viability are often seen as benefits driving the evolution of polyandrous behaviour. However, we raise the alternative possibility that paternal effects might shift females from their naturally selected optimum, and present some support for the notion that sexual conflict over a female’s optimal fecundity and embryo viability might generate antagonistic coevolution between the sexes.
Sources of genetic and phenotypic variance in sperm performance and larval traits in a sea urchin
Evans, J. P., Garcia-Gonzalez, F. & Marshall, D. J. 2007 Sources of genetic and phenotypic variance in sperm performance and larval traits in a sea urchin Evolution, 61: 2832-2838
Abstract
In nonresource based mating systems females are thought to derive indirect genetic benefits by mating with high-quality males. Such benefits can be due either to the intrinsic genetic quality of sires or to beneficial interactions between maternal and paternal haplotypes. Animals with external fertilization and no parental care offer unrivaled opportunities to address these hypotheses. With these systems, cross-classified breeding designs and in vitro fertilization can be used to disentangle sources of genetic and environmental variance in offspring fitness. Here, we employ these approaches in the Australian sea urchin Heliocidaris erythrogramma and explore how sire–dam identities influence fertilization rates, embryo viability (survival to hatching), and metamorphosis, as well as the interrelationships between these potential fitness traits. We show that fertilization is influenced by a combination of strong maternal effects and intrinsic male effects. Our subsequent analysis of embryo viability, however, revealed a highly significant interaction between parental genotypes, indicating that partial incompatibilities can severely limit offspring survival at this life-history stage. Importantly, we detected no significant relationship between fertilization rates and embryo viability. This finding suggests that fertilization rates should not be inferred from hatching rates, which is commonly practiced in species in which it is not possible to estimate fertilization at conception. Finally, we detected significant additive genetic variance due to sires in rates of juvenile metamorphosis, and a positive correlation between fertilization rates and metamorphosis. This latter finding indicates that the performance of a male’s ejaculate in noncompetitive IVF trials predicts heritable offspring traits, although the fitness implications of variance in rates of spontaneous juvenile metamorphosis have yet to be determined.

Pages