Research Group Space
paco.garcia[at]ebd.csic.es

Genetic covariation

Publications filtered by: Genetic covariation

The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world
Evans, J. P. & Garcia-Gonzalez, F. 2016 The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world Journal of Evolutionary Biology, 29: 2338-2361
Abstract

It is well known that sexual selection can target reproductive traits during successive pre- and post-mating episodes of selection. A key focus of recent studies has been to understand and quantify how these episodes of sexual selection interact to determine overall variance in reproductive success. In this paper we review empirical developments in this field but also highlight the considerable variability in patterns of pre- and post-mating sexual selection, attributable to variation in patterns of resource acquisition and allocation, ecological and social factors, genotype-by-environment interaction, and possible methodological factors that might obscure such patterns. Our aim is to highlight how (co)variances in pre- and post-mating sexually selected traits can be sensitive to changes in a range of ecological and environmental variables. We argue that failure to capture this variation when quantifying the opportunity for sexual selection may lead to erroneous conclusions about the strength, direction or form of sexual selection operating on pre- and post-mating traits. Overall, we advocate for approaches that combine measures of pre- and post-mating selection across contrasting environmental or ecological gradients to better understand the dynamics of sexual selection in polyandrous species. We also discuss some directions for future research in this area.

Lifetime changes in phenotypic expression and evolutionary potential of female mating traits in Drosophila melanogaster
Travers, L. M., Simmons, L. W. & Garcia-Gonzalez, F. 2016 Lifetime changes in phenotypic expression and evolutionary potential of female mating traits in Drosophila melanogaster Animal Behaviour, 121: 147-155
Abstract

Recognition of the ubiquity of female multiple mating has evoked an important shift in sexual selection research, emphasising the adaptive nature of female mating strategies. While phenotypic changes in female mating traits have been previously studied, little is known about the genetic basis of female mating behaviour and its potential to respond to selection at different stages throughout an individual’s life. Using a large quantitative genetic breeding design, we observed lifetime female mating behaviour in Drosophila melanogaster to examine the effect of female age and mating history on three key mating traits: courtship latency, mating latency and copula duration. Courtship latency (time until males initiate courtship) decreased with the cumulative number of females’ previous matings. Mating latency (defined here as the time between the beginning of courtship and the start of copulation) increased with female age, and copula duration was found to decrease as females aged. We calculated quantitative genetic estimates for mating traits in virgin females and at the females’ third mating to examine changes in the evolutionary potential of mating traits. We found considerable additive genetic variation in courtship latency and mating latency measured in virgin females. Copula duration displayed no heritable variation among females across sire families, but male effects were consistent with the idea that this trait is under male control. Heritability estimates differed significantly from zero in virgin females for courtship latency and mating latency. Heritability estimates did not differ significantly from zero when females were mating for the third time. However, overlapping 84% confidence intervals between heritability estimates obtained from virgin and mated females suggest that female mating strategies may have the potential to respond to selection at these different life stages.

Genetic variation but weak genetic covariation between pre- and postcopulatory episodes of sexual selection in Drosophila melanogaster
Travers, L. M., Garcia-Gonzalez, F. & Simmons, L. W. 2016 Genetic variation but weak genetic covariation between pre- and postcopulatory episodes of sexual selection in Drosophila melanogaster Journal of Evolutionary Biology, 29: 1535-1552
Additive genetic variance in polyandry enables its evolution but polyandry is unlikely to evolve through sexy or good sperm processes
Travers, L. M., Simmons, L. W. & Garcia-Gonzalez, F. 2016 Additive genetic variance in polyandry enables its evolution but polyandry is unlikely to evolve through sexy or good sperm processes Journal of Evolutionary Biology, 29: 916-928.
Abstract

Polyandry is widespread despite its costs. The sexually selected sperm hypotheses (‘sexy’ and ‘good’ sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2) while controlling for sampling variance due to male x male x female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest the evolution of polyandry may not be driven by sexy sperm or good sperm processes.

Travers, L. M., Garcia-Gonzalez, F. & Simmons, L. W. 2015 Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster Scientific Reports, 5: 15469
Abstract

The trade-off between survival and reproduction is fundamental to life history theory. Sexual selection is expected to favour a live fast die young life history pattern in males due to increased risk of extrinsic mortality associated with obtaining mates. Sexual conflict may also drive a genetic trade-off between reproduction and lifespan in females. We found significant additive genetic variance in longevity independent of lifetime mating frequency, and in early life mating frequency. There was significant negative genetic covariance between these traits indicating that females from families characterized by high levels of multiple mating early in life die sooner than females that engage in less intense early life mating.  Thus, despite heritable variation in both traits, their independent evolution is constrained by an evolutionary trade-off. Our findings indicate that, in addition to the well-known male-driven direct costs of mating on female lifespan (mediated by male harassment and the harmful effects of male seminal fluids), females with a genetic propensity to mate multiply live shorter lives. We discuss the potential role of sexual conflict in driving the evolutionary trade-off between reproduction and lifespan in Drosophila. More generally, our data show that, like males, females can exhibit a live fast die young life history strategy.

Experimental coevolution of male and female genital morphology
Simmons L. W. & Garcia-Gonzalez, F. 2011 Experimental coevolution of male and female genital morphology Nature Communications, 2:374
Abstract
Male genitalia typically exhibit patterns of rapid and divergent evolution, and there is now considerable evidence that sexual selection is an important driver of these patterns of phenotypic variation. Female genitalia have been less well studied, and are generally thought to be relatively invariant. Here we use experimental evolution to show that sexual selection drives the correlated evolution of female and male genital morphology in the scarabaeine dung beetle Onthophagus taurus. Moreover, we use quantitative genetic analyses to provide a rare insight into the genetic architecture underlying morphological variation in female genital morphology, and uncover evidence of the genetic covariation with male genital morphology that is expected to arise under persistent sexual selection.
Seen one seen them all? More to genitalia than meets the eye
Simmons, L. W. & Garcia-Gonzalez, F. 2011 Seen one seen them all? More to genitalia than meets the eye The Conversation
Garcia-Gonzalez, F. 2008 Male genetic quality and the inequality between paternity success and fertilization success: consequences for studies of sperm competition and the evolution of polyandry Evolution, 62:1653-1665
Abstract
Studies of postcopulatory sexual selection typically estimate a male’s fertilization success from his paternity success (P2) calculated at hatching or birth. However, P2 may be affected by differential embryo viability, thereby confounding estimations of true fertilization success (F2). This study examines the effects of variation in the ability of males to influence embryo viability upon the inequality between P2 and F2. It also investigates the consequences of this inequality for testing the hypothesis that polyandrous females accrue viability benefits for their offspring through facilitation of sperm competition (good-sperm model). Simulations of competitive mating trials show that although relative measures of male reproductive success tend to underestimate the strength of underlying good-sperm processes, good-sperm processes can be seriously overestimated using P2 values if males influence the viability of the embryos they sire. This study cautions the interpretation of P2 values as a proxy for fertilization success or sperm competitiveness in studies of postcopulatory sexual selection, and highlights that the good-sperm hypothesis needs empirical support from studies able to identify and separate unequivocally the males’ ability to win fertilizations from their ability to influence the development of embryos.
Female crickets trade offspring viability for fecundity
Simmons, L. W. & Garcia-Gonzalez, F. 2007 Female crickets trade offspring viability for fecundity Journal of Evolutionary Biology, 20: 1617-1623
Abstract
A growing number of studies are suggesting that females can improve the viability of their embryos by mating with multiple males. However, the reason why females should have low rates of embryo viability is puzzling. Here we conduct a quantitative genetic study of maternal effects on embryo viability in the field cricket Teleogryllus oceanicus. After controlling for female body size, we find significant additive genetic variance for ovary weight, a measure of fecundity, and egg hatching success, a measure of embryo viability. Moreover, we show a genetic trade-off between these traits that is predicted from life-history theory. High rates of embryo mortality in this highly fecund species might therefore be explained by selection favouring an optimum balance between fecundity and embryo viability that maximizes maternal fitness. Paternal effects on female fecundity and embryo viability are often seen as benefits driving the evolution of polyandrous behaviour. However, we raise the alternative possibility that paternal effects might shift females from their naturally selected optimum, and present some support for the notion that sexual conflict over a female’s optimal fecundity and embryo viability might generate antagonistic coevolution between the sexes.
The evolution of polyandry: intrinsic sire effects contribute to embryo viability
Garcia-Gonzalez, F. & Simmons, L. W. 2005 The evolution of polyandry: intrinsic sire effects contribute to embryo viability Journal of Evolutionary Biology, 18:1097-1103
Abstract
Females typically mate with more than one male despite the costs incurred, thus questioning Bateman’s principle. A series of genetic benefits have been proposed to account for the evolution of polyandry, including the acquisition of viability genes for offspring. The ‘intrinsic male quality’ hypothesis suggests that polyandry increases the probability that females produce offspring sired by males that bestow high viability on their offspring. Heritable variation in viability is the basic requirement for the occurrence of this genetic benefit. By using a half-sib breeding design with a species of cricket in which polyandry is known to increase hatching success, we present clear experimental evidence that intrinsic male quality contributes to embryo viability. Despite recent support for the evolution of polyandry based on compatibility of genotypes between males and females, we show that hatching success is not determined by an interaction between paternal and maternal genotypes but rather that sons inherit paternal genes that influence the viability of eggs laid by their mates. Moreover, our data implicate a potential role for indirect genetic effects of male accessory gland products on embryo viability. Additive genetic contributions to embryo viability may be an important factor underlying the frequently observed benefits of polyandrous behaviour.