Research Group Space
paco.garcia[at]ebd.csic.es

Genital morphology

Publications filtered by: Genital morphology

Experimental coevolution of male and female genital morphology
Simmons L. W. & Garcia-Gonzalez, F. 2011 Experimental coevolution of male and female genital morphology Nature Communications, 2:374
Abstract
Male genitalia typically exhibit patterns of rapid and divergent evolution, and there is now considerable evidence that sexual selection is an important driver of these patterns of phenotypic variation. Female genitalia have been less well studied, and are generally thought to be relatively invariant. Here we use experimental evolution to show that sexual selection drives the correlated evolution of female and male genital morphology in the scarabaeine dung beetle Onthophagus taurus. Moreover, we use quantitative genetic analyses to provide a rare insight into the genetic architecture underlying morphological variation in female genital morphology, and uncover evidence of the genetic covariation with male genital morphology that is expected to arise under persistent sexual selection.
Seen one seen them all? More to genitalia than meets the eye
Simmons, L. W. & Garcia-Gonzalez, F. 2011 Seen one seen them all? More to genitalia than meets the eye The Conversation
Evolutionary response to sexual selection in male genital morphology
Simmons, L. W., House, C. M., Hunt, J. & Garcia-Gonzalez, F. 2009 Evolutionary response to sexual selection in male genital morphology Current Biology, 19: 1442-1446
Abstract

Male genital morphology is characterized by two striking and general patterns of morphological variation: rapid evolutionary divergence in shape and complexity, and relatively low scaling relationships with body size. These patterns of variation have been ascribed to the action of sexual selection. Among species, monogamous taxa tend to have relatively less complex male genital morphology than do polygamous taxa. However, although variation in male genital morphology can be associated with variation in mating and fertilization success, there is no direct evidence that sexual selection generates the evolutionary changes in male genital shape that underlie observed macroevolutionary patterns. Moreover, the hypothesis that sexual selection acts to reduce the scaling relationship between body and genital size is based entirely on the theoretical argument that male genitalia should be selected to provide an appropriate mechanical and/or stimulatory fit to the most commonly encountered female genitalia. Here, using the dung beetle Onthophagus taurus, we combine the power of experimental evolution with multivariate selection and quantitative genetic analyses to provide the most comprehensive evidence available of the form and evolutionary consequences of sexual selection acting on male genital morphology.