Research Group Space
paco.garcia[at]ebd.csic.es

Indirect genetic effects

Publications filtered by: Indirect genetic effects

Transgenerational effects of maternal sexual interactions in seed beetles
Zajitschek, S. R. K., Dowling, D. K., Head, M. L., Rodriguez-Exposito, E. & Garcia-Gonzalez, F. 2018 Transgenerational effects of maternal sexual interactions in seed beetles Heredity, 121: 282-291
Abstract

Mating often bears large costs to females, especially in species with high levels of sexual conflict over mating rates. Given the direct costs to females associated with multiple mating, which include reductions in lifespan and lifetime reproductive success, past research focused on identifying potential indirect benefits (through increases in offspring fitness) that females may accrue. Far less attention has, however, been devoted to understanding how costs of sexual interactions to females may extend across generations. Hence, little is known about the transgenerational implications of variation in mating rates, or the net consequences of maternal sexual activities across generations. Using the seed beetle, Callosobruchus maculatus, a model system for the study of sexual conflict, we investigate the effects of mating with multiple males versus a single male, and tease apart effects due to sexual harassment and those due to mating per se, over three generations. A multigenerational analysis indicated that females that were exposed to ongoing sexual harassment and who also were permitted to mate with multiple males showed no difference in net fitness compared to females that mated just once without ongoing harassment. Intriguingly, however, females that were continually harassed, but permitted to mate just once, suffered a severe decline in net fitness compared to females that were singly (not harassed) or multiply mated (harassed, but potentially gaining benefits via mating with multiple males). Overall, the enhanced fitness in multiply mated compared to harassed females may indicate that multiple mating confers transgenerational benefits. These benefits may counteract, but do not exceed (i.e., we found no difference between singly and multiply mated females), the large transgenerational costs of harassment. Our study highlights the importance of examining transgenerational effects from an inclusive (looking at both indirect benefits but also costs) perspective, and the need to investigate transgenerational effects across several generations if we are to fully understand the consequences of sexual interactions, sexual conflict evolution, and the interplay of sexual conflict and multi-generational costs and benefits.

Indirect genetic effects—everything is special, everything is important: a comment on Bailey et al
Garcia-Gonzalez, F. 2018 Indirect genetic effects—everything is special, everything is important: a comment on Bailey et al Behavioral Ecology, 29(1): 12-13
Transgenerational effects of sexual interactions and sexual conflict: non-sires boost the fecundity of females in the following generation
Garcia-Gonzalez, F. and Dowling, D. K. 2015 Transgenerational effects of sexual interactions and sexual conflict: non-sires boost the fecundity of females in the following generation Biology Letters, 11:20150067
Abstract

The consequences of sexual interactions extend beyond the simple production of offspring. These interactions typically entail direct effects on female fitness, but may also impact the life histories of later generations. Evaluating the cross-generational effects of sexual interactions provides insights into the dynamics of sexual selection and conflict. Such studies can elucidate whether offspring fitness optima diverge across sexes upon heightened levels of sexual interaction among parents. Here, we found that, in Drosophila melanogaster, components of reproductive success in females, but not males, were contingent on the nature of sexual interactions experienced by their mothers. In particular, maternal sexual interactions with non-sires enhanced female fecundity in the following generation. This highlights the importance of non-sire influences of sexual interactions on the expression of offspring life histories.The consequences of sexual interactions extend beyond the simple production of offspring. These interactions typically entail direct effects on female fitness, but may also impact the life histories of later generations. Evaluating the cross-generational effects of sexual interactions provides insights into the dynamics of sexual selection and conflict. Such studies can elucidate whether offspring fitness optima diverge across sexes upon heightened levels of sexual interaction among parents. Here, we found that, in Drosophila melanogaster, components of reproductive success in females, but not males, were contingent on the nature of sexual interactions experienced by their mothers. In particular, maternal sexual interactions with non-sires enhanced female fecundity in the following generation. This highlights the importance of non-sire influences of sexual interactions on the expression of offspring life histories.

Male-induced costs of mating for females compensated by offspring viability benefits in an insect
Garcia-Gonzalez, F. & Simmons, L. W. 2010 Male-induced costs of mating for females compensated by offspring viability benefits in an insect Journal of Evolutionary Biology, 23: 2066-2075
Abstract
Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay-offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner’s absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate-induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species.
Paternal indirect genetic effects on offspring viability and the benefits of polyandry
Garcia-Gonzalez, F. & Simmons, L. W. 2007 Paternal indirect genetic effects on offspring viability and the benefits of polyandry Current Biology, 17: 32-36
Abstract
Although females are expected to maximize their reproductive success with only one or a few matings, the females of many species mate with multiple partners. Experimental studies have found evidence for an increase in egg or embryo viability when females mate polyandrously. These studies have been interpreted in the context of genetic-benefit models that propose that multiple mating increases offspring viability because it allows females to select male genotypes that influence viability directly or because it allows females to avoid genetic incompatibility. However, no studies have examined directly the precise mechanisms by which parents influence embryo viability. Using a morphological marker that enabled us to determine paternity and survival of embryos sired by individual male crickets in both sperm competitive and -noncompetitive situations, we show that males inducing high embryo viability enhance the viability of embryos sired by inferior males. These results indicate that paternal effects and interacting phenotypes determine embryo viability. They show that a male’s reproductive success is modified by the interaction between indirect genetic effects of sperm competitors. Importantly, our findings show that the benefits accruing to offspring of multiply mated females need not be transmitted genetically.
The evolution of polyandry: intrinsic sire effects contribute to embryo viability
Garcia-Gonzalez, F. & Simmons, L. W. 2005 The evolution of polyandry: intrinsic sire effects contribute to embryo viability Journal of Evolutionary Biology, 18:1097-1103
Abstract
Females typically mate with more than one male despite the costs incurred, thus questioning Bateman’s principle. A series of genetic benefits have been proposed to account for the evolution of polyandry, including the acquisition of viability genes for offspring. The ‘intrinsic male quality’ hypothesis suggests that polyandry increases the probability that females produce offspring sired by males that bestow high viability on their offspring. Heritable variation in viability is the basic requirement for the occurrence of this genetic benefit. By using a half-sib breeding design with a species of cricket in which polyandry is known to increase hatching success, we present clear experimental evidence that intrinsic male quality contributes to embryo viability. Despite recent support for the evolution of polyandry based on compatibility of genotypes between males and females, we show that hatching success is not determined by an interaction between paternal and maternal genotypes but rather that sons inherit paternal genes that influence the viability of eggs laid by their mates. Moreover, our data implicate a potential role for indirect genetic effects of male accessory gland products on embryo viability. Additive genetic contributions to embryo viability may be an important factor underlying the frequently observed benefits of polyandrous behaviour.