Research Group Space
paco.garcia[at]ebd.csic.es

Onthophagus taurus

Publications filtered by: Onthophagus taurus

Experimental coevolution of male and female genital morphology
Simmons L. W. & Garcia-Gonzalez, F. 2011 Experimental coevolution of male and female genital morphology Nature Communications, 2:374
Abstract
Male genitalia typically exhibit patterns of rapid and divergent evolution, and there is now considerable evidence that sexual selection is an important driver of these patterns of phenotypic variation. Female genitalia have been less well studied, and are generally thought to be relatively invariant. Here we use experimental evolution to show that sexual selection drives the correlated evolution of female and male genital morphology in the scarabaeine dung beetle Onthophagus taurus. Moreover, we use quantitative genetic analyses to provide a rare insight into the genetic architecture underlying morphological variation in female genital morphology, and uncover evidence of the genetic covariation with male genital morphology that is expected to arise under persistent sexual selection.
Good genes and sexual selection in dung beetles (Onthophagus taurus): Genetic variance in egg-to-adult and adult viability
Garcia-Gonzalez, F. & Simmons, L. W. 2011 Good genes and sexual selection in dung beetles (Onthophagus taurus): Genetic variance in egg-to-adult and adult viability PLoS ONE, 6:e16233
Abstract
Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females.
Seen one seen them all? More to genitalia than meets the eye
Simmons, L. W. & Garcia-Gonzalez, F. 2011 Seen one seen them all? More to genitalia than meets the eye The Conversation
Evolutionary response to sexual selection in male genital morphology
Simmons, L. W., House, C. M., Hunt, J. & Garcia-Gonzalez, F. 2009 Evolutionary response to sexual selection in male genital morphology Current Biology, 19: 1442-1446
Abstract

Male genital morphology is characterized by two striking and general patterns of morphological variation: rapid evolutionary divergence in shape and complexity, and relatively low scaling relationships with body size. These patterns of variation have been ascribed to the action of sexual selection. Among species, monogamous taxa tend to have relatively less complex male genital morphology than do polygamous taxa. However, although variation in male genital morphology can be associated with variation in mating and fertilization success, there is no direct evidence that sexual selection generates the evolutionary changes in male genital shape that underlie observed macroevolutionary patterns. Moreover, the hypothesis that sexual selection acts to reduce the scaling relationship between body and genital size is based entirely on the theoretical argument that male genitalia should be selected to provide an appropriate mechanical and/or stimulatory fit to the most commonly encountered female genitalia. Here, using the dung beetle Onthophagus taurus, we combine the power of experimental evolution with multivariate selection and quantitative genetic analyses to provide the most comprehensive evidence available of the form and evolutionary consequences of sexual selection acting on male genital morphology.

Evolutionary reduction in testes size and competitive fertilization success in response to the experimental removal of sexual selection in dung beetles
Simmons, L. W. & Garcia-Gonzalez, F. 2008 Evolutionary reduction in testes size and competitive fertilization success in response to the experimental removal of sexual selection in dung beetles Evolution, 62:2580-2591
Abstract
Sexual selection is thought to favor the evolution of secondary sexual traits in males that contribute to mating success. In species where females mate with more than one male, sexual selection also continues after copulation in the form of sperm competition and cryptic female choice. Theory suggests that sperm competition should favor traits such as testes size and sperm production that increase a male’s competitive fertilization success. Studies of experimental evolution offer a powerful approach for assessing evolutionary responses to variation in sexual selection pressures. Here we removed sexual selection by enforcing monogamy on replicate lines of a naturally polygamous horned beetle, Onthophagus taurus, and monitoring male investment in their testes for 21 generations. Testes size decreased in monogamous lines relative to lines in which sexual selection was allowed to continue. Differences in testes size were dependent on selection history and not breeding regime. Males from polygamous lines also had a competitive fertilization advantage when in sperm competition with males from monogamous lines. Females from polygamous lines produced sons in better condition, and those from monogamous lines increased their sons condition by mating polygamously. Rather than being costly for females, multiple mating appears to provide females with direct and/or indirect benefits. Neither body size nor horn size diverged between our monogamous and polygamous lines. Our data show that sperm competition does drive the evolution of testes size in onthophagine beetles, and provide general support for sperm competition theory.
Shorter sperm confer higher competitive fertilization success
Garcia-Gonzalez, F. & Simmons, L. W. 2007 Shorter sperm confer higher competitive fertilization success Evolution, 61: 816-824
Abstract

Spermatozoa exhibit taxonomically widespread patterns of divergent morphological evolution. However, the adaptive significance of variation in sperm morphology remains unclear. In this study we examine the role of natural variation in sperm length on fertilization success in the dung beetle Onthophagus taurus. We conducted sperm competition trials between males that differed in the length of their sperm and determined the paternity of resulting offspring using amplified fragment length polymorphism (AFLP) markers. We also quantified variation in the size and shape of the female’s sperm storage organ to determine whether female morphology influenced the competitiveness of different sperm morphologies. We found that fertilization success was biased toward males with relatively shorter sperm, but that selection on sperm length was dependent on female tract morphology; selection was directional for reduced sperm length across most of the spermathecal size range, but stabilizing in females with the smallest spermathecae. Our data provide empirical support for the theory that sperm competition should favor the evolution of numerous tiny sperm. Moreover, because sperm length is both heritable and genetically correlated with condition, our results are consistent with a process by which females can accrue genetic benefits for their offspring from the incitement of sperm competition and/or cryptic female choice, as proposed by the “sexy sperm” and “good sperm” models for the evolution of polyandry.