Research Group Space
paco.garcia[at]ebd.csic.es

Paternity success

Publications filtered by: Paternity success

The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world
Evans, J. P. & Garcia-Gonzalez, F. 2016 The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world Journal of Evolutionary Biology, 29: 2338-2361
Abstract

It is well known that sexual selection can target reproductive traits during successive pre- and post-mating episodes of selection. A key focus of recent studies has been to understand and quantify how these episodes of sexual selection interact to determine overall variance in reproductive success. In this paper we review empirical developments in this field but also highlight the considerable variability in patterns of pre- and post-mating sexual selection, attributable to variation in patterns of resource acquisition and allocation, ecological and social factors, genotype-by-environment interaction, and possible methodological factors that might obscure such patterns. Our aim is to highlight how (co)variances in pre- and post-mating sexually selected traits can be sensitive to changes in a range of ecological and environmental variables. We argue that failure to capture this variation when quantifying the opportunity for sexual selection may lead to erroneous conclusions about the strength, direction or form of sexual selection operating on pre- and post-mating traits. Overall, we advocate for approaches that combine measures of pre- and post-mating selection across contrasting environmental or ecological gradients to better understand the dynamics of sexual selection in polyandrous species. We also discuss some directions for future research in this area.

Genetic variation but weak genetic covariation between pre- and postcopulatory episodes of sexual selection in Drosophila melanogaster
Travers, L. M., Garcia-Gonzalez, F. & Simmons, L. W. 2016 Genetic variation but weak genetic covariation between pre- and postcopulatory episodes of sexual selection in Drosophila melanogaster Journal of Evolutionary Biology, 29: 1535-1552
Additive genetic variance in polyandry enables its evolution but polyandry is unlikely to evolve through sexy or good sperm processes
Travers, L. M., Simmons, L. W. & Garcia-Gonzalez, F. 2016 Additive genetic variance in polyandry enables its evolution but polyandry is unlikely to evolve through sexy or good sperm processes Journal of Evolutionary Biology, 29: 916-928.
Abstract

Polyandry is widespread despite its costs. The sexually selected sperm hypotheses (‘sexy’ and ‘good’ sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2) while controlling for sampling variance due to male x male x female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest the evolution of polyandry may not be driven by sexy sperm or good sperm processes.

Garcia-Gonzalez, F. 2008 Male genetic quality and the inequality between paternity success and fertilization success: consequences for studies of sperm competition and the evolution of polyandry Evolution, 62:1653-1665
Abstract
Studies of postcopulatory sexual selection typically estimate a male’s fertilization success from his paternity success (P2) calculated at hatching or birth. However, P2 may be affected by differential embryo viability, thereby confounding estimations of true fertilization success (F2). This study examines the effects of variation in the ability of males to influence embryo viability upon the inequality between P2 and F2. It also investigates the consequences of this inequality for testing the hypothesis that polyandrous females accrue viability benefits for their offspring through facilitation of sperm competition (good-sperm model). Simulations of competitive mating trials show that although relative measures of male reproductive success tend to underestimate the strength of underlying good-sperm processes, good-sperm processes can be seriously overestimated using P2 values if males influence the viability of the embryos they sire. This study cautions the interpretation of P2 values as a proxy for fertilization success or sperm competitiveness in studies of postcopulatory sexual selection, and highlights that the good-sperm hypothesis needs empirical support from studies able to identify and separate unequivocally the males’ ability to win fertilizations from their ability to influence the development of embryos.
Sperm viability matters in insect sperm competition
Garcia-Gonzalez, F. & Simmons, L. W. 2005 Sperm viability matters in insect sperm competition Current Biology, 15: 271-275
Abstract

Female promiscuity often results in the ejaculates of different males competing to fertilize a female's ova. Experimental studies in insects have shown how sperm competition can be a potent selective force acting on an array of male reproductive traits, including features of the ejaculate such as sperm numbers or sperm size. However, experimental analysis of the role of sperm quality in determining paternity in insects has been neglected, despite the fact that sperm quality has been shown to influence the outcome of sperm competition in vertebrates. A recent comparative analysis found that males of polyandrous insect species show a higher proportion of live sperm in their stores, suggesting that sperm competition has shaped the quality of insect sperm. Here we test the hypothesis that sperm viability influences paternity at the within-species level. We use the cricket Teleogryllus oceanicus to conduct sperm competition trials involving pre-screened males that differ in the viability of their sperm. We find that paternity success is determined by the proportion of live sperm in a male's ejaculate. Furthermore, we were able to predict the patterns of paternity observed on the basis of the males' relative representation of viable sperm in the female's sperm storage organ. Our findings provide the first experimental evidence for the theory that sperm competition selects for higher sperm quality in insects, and indicate that between-male variation in sperm quality needs to be considered in theoretical and experimental studies of insect sperm competition.

Variation in paternity in the field cricket Teleogryllus oceanicus: no influence of sperm numbers or sperm length
Simmons, L.W.; Wernham, J.; Garcia-Gonzalez, F. & Kamien, D. 2002 Variation in paternity in the field cricket Teleogryllus oceanicus: no influence of sperm numbers or sperm length Behavioral Ecology, 14: 539-545
Abstract
Recent attention has focused on the role that sperm competition may play in the evolution of sperm morphology. Theoretical analyses predict increased sperm size, decreased sperm size, and no change in sperm size in response to sperm competition, depending on the assumptions made concerning the life history and function of sperm. However, although there is good evidence that sperm morphology varies widely within and between species, the adaptive significance of this variation has not been examined. Here we document significant intraspecific variation in sperm length in the field cricket, Teleogryllus oceanicus. Sperm length did not influence the rate of migration of sperm from the spermatophore to the female’s spermatheca. We performed sperm competition trials in which we varied the numbers of sperm transferred by each of two males that differed in the length of sperm they produced. Neither sperm length nor the number of sperm transferred influenced paternity. The same results were obtained using two different methods for assigning paternity. The distribution of paternity across a female’s mates was highly variable, with frequently one, or more in the case of females mated to four males, principal sire. There were no mating order effects on paternity. These data show that sperm do not mix randomly in the female’s spermatheca. We discuss several alternative explanations for the patterns of paternity observed.