Research Group Space

Sexual conflict

Publications filtered by: Sexual conflict

No evidence for heritability of male mating latency or copulation duration across social environments in Drosophila melanogaster
Taylor, M. L., Evans, J. P. and Garcia-Gonzalez, F. 2013 No evidence for heritability of male mating latency or copulation duration across social environments in Drosophila melanogaster PLoS ONE, 8:e77347
A key assumption underpinning major models of sexual selection is the expectation that male sexual attractiveness is heritable. Surprisingly, however, empirical tests of this assumption are relatively scarce. Here we use a paternal fullsib/half-sib breeding design to examine genetic and environmental variation in male mating latency (a proxy for sexual attractiveness) and copulation duration in a natural population of Drosophila melanogaster. As our experimental design also involved the manipulation of the social environment within each full-sibling family, we were able to further test for the presence of genotype-by-environment interactions (GEIs) in these traits, which have the potential to compromise mate choice for genetic benefits. Our experimental manipulation of the social environment revealed plastic expression of both traits; males exposed to a rival male during the sensitive period of adult sexual maturation exhibited shorter mating latencies and longer copulation durations than those who matured in isolation. However, we found no evidence for GEIs, and no significant additive genetic variation underlying these traits in either environment. These results undermine the notion that the evolution of female choice rests on covariance between female preference and male displays, an expectation that underpins indirect benefit models such as the good genes and sexy sons hypotheses. However, our results may also indicate depletion of genetic variance in these traits in the natural population studied, thus supporting the expectation that traits closely aligned with reproductive fitness can exhibit low levels of additive genetic variance.
Maternal sexual interactions affect offspring survival and ageing
Dowling, D. K., Williams, B. R., and Garcia-Gonzalez, F. 2014 Maternal sexual interactions affect offspring survival and ageing Journal of Evolutionary Biology, 27: 88-97

In many species, females exposed to increased sexual activity experience reductions in longevity. Here, in Drosophila melanogaster, we report an additional effect on females brought about by sexual interactions; an effect that spans generations. We subjected females to a sexual treatment consisting of different levels of sexual activity, and then investigated patterns of mortality in their offspring. We found reduced probabilities of survival, increases in the rate-of-senescence, and a pattern of reduced mean longevities, for offspring produced by mothers that experienced higher levels of sexual interaction. We contend that these effects constitute trans-generational costs of sexual conflict – the existence or implications of which have rarely been considered previously. Our results indicate that ongoing exposure by mothers to male pre-copulatory interactions is itself sufficient to drive trans-generational effects on offspring mortality. Thus, we show that increases in maternal sexual activity can produce trans-generational effects that permeate through to latter life-stages in the offspring. This helps to elucidate the complex interplay between sex and ageing, and provides new insights into the dynamics of adaptation under sexual selection.

Model Systems, Taxonomic Bias, And Sexual Selection: Beyond Drosophila
Zuk, M., Garcia-Gonzalez, F. Herbestein, M. E. and Simmons, L. W. 2014 Model Systems, Taxonomic Bias, And Sexual Selection: Beyond Drosophila Annual Review of Entomology, 59: 321-338

While model systems are useful in entomology, allowing generalizations to be made based on a few well-known species, they also have drawbacks. It can be difficult to know how far to generalize from information in a few species: are all flies like Drosophila? The use of model systems is particularly problematic in studying sexual selection, where variability among taxa is key to the evolution of different behaviors. A bias toward use of a few insect species, particularly Drosophila, is evident in the sexual selection and sexual conflict literature over the last several decades, although the diversity of study organisms has increased more recently. As the number of model systems used to study sexual conflict increased, support for the idea that sexual interactions resulted in harm to females decreased. Future work should choose model systems thoughtfully, combining well-known species with those that can add to the variation that allows us to make more meaningful generalizations.

Male, female – ah, what's the difference?
Garcia-Gonzalez, F., Dowling, D. K.& Nystrand, M. 2013 Male, female – ah, what's the difference? The Conversation